Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 65(9): 738-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22026191

RESUMO

Dye-sensitized solar cells (DSCs) are one of the most promising environmental friendly and low material costs photovoltaic devices. DSCs accomplish the separation of the optical absorption and charge separation processes by the association of a sensitizer as light absorbing material with a wide band gap semiconductor. The mesoscopic morphology of the semiconductor produces an interface with a huge area endowing these systems with intriguing optoelectronic properties. In recent years the DSC has made excellent progress. Conversion efficiencies over 12% and excellent stability have been reached rendering it a credible alternative to conventional p-n junction photovoltaic devices. Commercial exploitation of DSCs started in 2009. In addition to the DSC, Laboratory of Photonics and Interfaces performs research in the field of photoelectrochemical water splitting and materials design for organic light emitting diodes.

2.
Inorg Chem ; 46(15): 5989-6001, 2007 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-17583337

RESUMO

We report a combined experimental and theoretical study on cationic Ir(III) complexes for OLED applications and describe a strategy to tune the phosphorescence wavelength and to enhance the emission quantum yields for this class of compounds. This is achieved by modulating the electronic structure and the excited states of the complexes by selective ligand functionalization. In particular, we report the synthesis, electrochemical characterization, and photophysical properties of a new cationic Ir(III) complex, [Ir(2,4-difluorophenylpyridine)2(4,4'-dimethylamino-2,2'-bipyridine)](PF(6)) (N969), and compare the results with those reported for the analogous [Ir(2-phenylpyridine)2(4,4'-dimethylamino-2,2'-bipyridine)](PF(6)) (N926) and for the prototype [Ir(2-phenylpyridine)2(4,4'-tert-butyl-2,2'-bipyridine)](PF(6)) complex, hereafter labeled N925. The three complexes allow us to explore the (C/\N) and (N/\N) ligand functionalization: considering N925 as a reference, we investigate in N926 the effect of electron-releasing substituents on the bipyridine ligand, while in N969, we investigate the combined effect of electron-releasing substituents on the bipyridine ligand and the effect of electron-withdrawing substituents on the phenylpyridine ligands. For N969 we obtain blue-green emission at 463 nm with unprecedented high quantum yield of 85% in acetonitrile solution at room temperature. To gain insight into the factors responsible for the emission color change and the different quantum yields, we perform DFT and TDDFT calculations on the ground and excited states of the three complexes, characterizing the excited-state geometries and including solvation effects on the calculation of the excited states. This computational procedure allows us to provide a detailed assignment of the excited states involved in the absorption and emission processes and to rationalize the factors determining the efficiency of radiative and nonradiative deactivation pathways in the investigated complexes. This work represents an example of electronic structure-driven tuning of the excited-state properties, thus opening the way to a combined theoretical and experimental strategy for the design of new iridium(III) phosphors with specific target characteristics.

5.
Inorg Chem ; 35(5): 1168-1178, 1996 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11666305

RESUMO

New, hydrophobic ionic liquids with low melting points (<-30 degrees C to ambient temperature) have been synthesized and investigated, based on 1,3-dialkyl imidazolium cations and hydrophobic anions. Other imidazolium molten salts with hydrophilic anions and thus water-soluble are also described. The molten salts were characterized by NMR and elemental analysis. Their density, melting point, viscosity, conductivity, refractive index, electrochemical window, thermal stability, and miscibility with water and organic solvents were determined. The influence of the alkyl substituents in 1, 2, 3, and 4(5)-positions on these properties was scrutinized. Viscosities as low as 35 cP (for 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (bis(triflyl)amide) and trifluoroacetate) and conductivities as high as 9.6 mS/cm were obtained. Photophysical probe studies were carried out to establish more precisely the solvent properties of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide). The hydrophobic molten salts are promising solvents for electrochemical, photovoltaic, and synthetic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...